AEE Webinar Wednesday, January 22nd, 2020 2:00-3:00pm EDT

Predictive Demand Side Management Optimization Ali Mehmani, PhD, CEM Head, Core Research, Prescriptive Data Research Scientist, Data Science Institute, Columbia University

Presented in Feb. 2019

Published on Sept. 2019

BUILDING OS Robust and Secure Al Platform & Dashboard Collaboration

BUILDING APP Data-Enabled Building Energy Saving Applications

Building Operation

Anomaly Detection

Space Utilization

Measure

Demand Response

Outline

- Motivation
- Objectives
- Results and Discussion
- Concluding Remarks

Background and Literature

Predictive Demand Side Management Opt.

Motivation

Demand load vs Capacity

Building Sector Contribution Demand/Supply Management

Up to 20% of the total installed electricity generation capacity in the United States is dedicated to meeting peak loads (defined as in use only 5% of the time.

Motivation

Demand load vs Capacity Demand/Supply Management Building Sector Contribution

COLUMBIA

UNIVERSITY

Demand and supply-side management techniques can play essential roles in smoothing peak demands and thus increasing the efficiency and reliability of the grid system.

Motivation

Demand load vs Capacity Demand/Supply Management Building Sector Contribution

The building sector contributes up to 75% of all electricity usage and is a significantly larger contributor, proportionately, to peak demand.

Residential 37%

Industrial 27%

Transportation 0.2%

Electricity Consumption **By Sector** [2014]

Comercial 35%

Demand Side Management (DSM)

"Changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized"

DSM Technology

- Direct-load control
- Load-limiter technique
- Price-based techniques

Storage-based DSM

Direct-load Control Technique Utility remotely controls customers' registered appliances/thermostats.

DSM Technology

- **Direct-load control**
- Load-limiter technique
- Price-based techniques

Storage-based DSM

Association of Energy Engineers

BMS/BAS

DSM Technology

- **Direct-load control**
- Load-limiter technique
- Price-based techniques

prescriptive

₩.

COLUMBIA University

Storage-based DSM

Price-based Technique (e.g. ToU)

DSM Technology

- **Direct-load control**
- Load-limiter technique
- Price-based techniques

prescriptive

H

COLUMBIA

UNIVERSITY

Storage-based DSM

DSM using Energy Storage Systems (ESS)

Applicability of DSM techniques has been improved by integrating ESS in a distributed fashion.

Store Grid Electricity To ESS

 Electricity cost variation Modern storage systems

Literature

Storage-based DSM

- emissions.
- electrical storage under a real-time pricing tariff.
- linear programming problem.

While there has been substantial research on optimizing the energy consumption and peak demand through MPC algorithms, a relatively limited number of them have focused on approaches for adjusting zone setpoint temperature

COLUMBIA

UNIVERSITY

• Stable et al. (2013) formulated the integration of electrical energy storage systems in commercial buildings as a mixed-integer linear program to minimize energy cost and CO2

• Dufo-Lopez, (2015) formulated a new model to find the optimal nominal capacity of the

• Zheng et al. (2015) demonstrated cost savings of different storage systems (flywheels, conventional, advanced and flow batteries) in a household with a ToU or peak-demand based New York City tariff structure through simulations.

• Wang et al. (2016) investigated the integration of stationary battery systems and electric vehicles in a commercial building by formulating a price-based DSM as a mixed-integer

Objective

The primary objective of this study is to design a novel DSM framework based on particle swarm optimization algorithms that

 Minimize grid load peaks • Minimize electricity cost, Quantify system payback time and • Preserving occupant comfort.

Passive DSM Optimization

- **Capacity Optimization**
- **Dispatch Strategy**
- Degradation

Real-time DSM Opt.

- Hierarchical opt. Formulation

Electricity Cost

Passive DSM Optimization

- Conducting the size (i.e., nominal capacity) optimization of the battery storage by minimizing Equipment Installation Cost
 - Financing Cost

Passive DSM Optimization

- **Capacity Optimization**
- **Dispatch Strategy**
- Degradation

Real-time DSM Opt.

- Hierarchical opt. Formulation

prescriptive data

<u> </u>

COLUMBIA UNIVERSITY Electricity Cost Financing Cost

Passive DSM Optimization

- Conducting the size (i.e., nominal capacity) optimization of the battery storage by minimizing
 - Equipment Installation Cost

MODEL PREDICTIVE **CONTROL - DSM**

 $Min: E_{elec} + E_{lcc}$

st.

Battery Operational Constraints

Passive DSM Optimization

- Capacity Optimization
- **Dispatch Strategy**
- Degradation

Real-time DSM Opt.

- Hierarchical opt. Formulation

<u> </u>

DSM Optimization Mixed-integer NL Programing

$$\Lambda^* = \operatorname{argmax}\left(\sum_{n=1}^{12} \left[\mathbb{P}(G_n^{w/o}) - \mathbb{R}(\Lambda) - \mathbb{P}(G_n^w(\Gamma_n^*, \mathbb{Q}))\right]\right)$$

subject to : Battery storage system constraints $\Gamma_n^* = argmax \Big(\mathbb{P}(G_n^{w/o}) - \mathbb{R}(\Lambda) - \mathbb{P}(G_n^w(\Gamma_n, \Lambda)) \Big)$ $\Lambda \in \mathbb{Z}_{>0}, \Lambda \leq \Lambda^{max}$ $\mathbb{P}(.) = P^{EC}(.) + P^{DC}(.)$

> Λ^* : Optimal Storage Capacity $\left| \right| \mathcal{V}$ ToU Tarif Model $G^{w/o}$ Grid load w/o Battery G^{W} Grid load w Battery Coptimal Demand Limit \mathbb{R} 'Monthly Equipment Cost

Battery Dispatch Strategy

Association of Energy Engineers

COLUMBIA

UNIVERSITY

Charging	$t \mod E(t) < \Gamma(t)$
Discharg	ing mode; $E(t) > I$
Neutral r	node; $E(t) = \Gamma(t) d$
Λ	Storage Capac
E	Building Load
Γ	Demand Limit

So
$$C(t) = So C(t - 1) + min(|E(t) - \Gamma(t)|, R_C) \times \Delta t$$

 $\Gamma(t)$
So $C(t) = So C(t - 1) - min(\frac{|E(t) - \Gamma(t)|}{\eta_D}, R_D) \times \Delta$
or $E(t) = 0$
So $C(t) = So C(t - 1)$
State of Charge

Battery Degradation

Hierarchical opt. **Formulation**

prescriptive

COLUMBIA

University

dependent on many factors:

Calendar aging Depth of discharge

· We approximate the non-linear degradation process by a twosegment piecewise linear function of charge throughput.

Battery degradation is a complex non-linear process that is

- Number of charge/discharge cycles

Passive DSM Optimization

- Capacity Optimization
- **Dispatch Strategy**
- Degradation

Real-time DSM Opt.

Hierarchical opt. ormulation

Real-time DSM Optimization

 This step performs concurrent one-day-ahead optimization of the setpoint temperature profile and dispatch strategy of the battery.

 The objective of this step is to minimize the electricity cost subject to the human comfort and storage constraints.

Passive DSM Optimization

- **Capacity Optimization**
- Dispatch Strategy
- Degradation

Real-time DSM Opt.

Hierarchical opt. Formulation

1-day-ahead Forecasted Weather

Optimal Daily Set-point Temp. Optimal Daily Demand Limit(s)

Real-time DSM Optimization

Passive DSM Optimization

- Capacity Optimization
- **Dispatch Strategy**
- Degradation

Real-time DSM Opt.

Hierarchical opt. Formulation

Real-time DSM Optimization

Hourly temp.

Temperature [C]

Demand Profile with Storage & Pre-Cooling Demand Profile No Storage - with Pre-Cooling

Testbed

Equipment	Quantity	Peak power [W/unit]
Computer (server)	2	65
Computer (desktop)	$\lfloor N/2 \rfloor$	65
Computer (laptop)	$\lfloor N/2 \rfloor$	19
Monitor (desktop)	$\lfloor N/2 \rfloor$	35
Monitor (server)	2	35
Photo copier	1	1100
Fax	2	35
Refrigerator	2	52
Water cooler	2	350
Coffee maker	2	1050
Misc. loads (e.g., network routers)	Ν	4

Testbed

Comparison of load profiles simulated for the case study office building versus observed data.

TUE	WED	THU	FRI	SAT	SUN

use %, for	Office building	Commercial	Commercial in North East US	Case study building
	39	17	18	39
	15	14	15	16
	9	16	18	14
	14	15	11	10
ζ	5	18	17	3
	1	0.5	0.5	1
	17	19.5	20.5	17

Results & Discussion

optimization)

A

COLUMBIA UNIVERSITY

Determining the optimal battery size (passive DSM)

$$\mathbb{P}_{n}^{w/o}) - \mathbb{R}(\Lambda) - \mathbb{P}(G_{n}^{w}(\Gamma_{n}^{*},\Lambda)) \right)$$

$$\binom{n}{n} - \mathbb{R}(\Lambda) - \mathbb{P}(G_n^*(\Gamma_n^*,\Lambda))])$$

Results & Discussion

- Optimal demand limits for each month as determined via the passive DSM algorithm.
 - three time windows in the tariff: Off peak hours (OPh), Peak hours (Ph), and Partial peak hours (PPh).

Month

January (February March (n April (n =May (n =June (n =July (n =August (n September October (November December

• Demand further vary with time of day to optimize vis- à-vis the

	Γ ^{OPh} [kW]	$\Gamma^{\rm Ph}$ [kW]	Γ^{PPh} [kW]
n = 1)	18.46	19.16	n/a
(n = 2)	18.49	18.88	n/a
= 3)	16.62	18.70	n/a
- 4)	16.36	18.56	n/a
5)	24.85	28.31	n/a
6)	28.26	32.54	11.95
7)	30.39	33.55	20.58
= 8)	23.26	31.73	22.98
r(n = 9)	18.24	29.11	19.23
n = 10)	18.24	18.60	n/a
n = 11	18.44	18.95	n/a
(n = 12)	18.59	19.05	n/a

40

Temperature [C] 30 57 15 -

Results & Discussion

Results & Discussion

Grid peak load reduction in summer months via PDSMO

Results & Discussion

Association of Energy Engineers

Breakdown of total annual costs

Human thermal comfort in different DSM approaches

Concluding Remarks

 A novel DSM framework that concurrently optimizes the electric and thermal storage in office buildings where a Time-of-Use (ToU) and/or demand-based rate structure is developed.

 The initial implementation indicates that PDSM reduces the maximum monthly grid peak load by up to 26%

 The annual electricity cost (demand and energy) charges) is also reduced significantly by 10.7%, enough to more than offset the equipment cost.

Thank You!

Ali Mehmani, PhD Head, Core Research, Prescriptive Data **Research Scientist, Data Science Institute, Columbia University**

Presented in Feb. 2019

Published on Sept. 2019

