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Outline . Motivation
I
. Background and Literature
. Objectives
. Predictive Demand Side Management Opt
. Results and Discussion
. Concluding Remarks
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Up to of the total installed electricity
generation capacity in the United States is
Motivation dedicated to meeting peak loads (defined as in use

I only of the time.

® Demand load vs Capacity
®
®

Typical Summer Day

» Electricity Demand
within ERCOT [2]

Typical Summer Day
> Electricity Demand
within CAISO [3]
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can play essential roles in smoothing peak demands
Motivation and thus increasing the efficiency and reliability of
A the grid system.

® Demand load vs Capacity

® Demand/Supply Management
®
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Motivation
N

® Demand load vs Capacity
® Demand/Supply Management
® Building Sector Contribution
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The

contributes up to

of all

electricity usage and iIs a significantly larger
contributor, proportionately, to peak demand.

Residential
37%

Industrial
21 %

Electricity

Consumption

By Sector
[2014]

Transportation
0.2%

Comercial
35%



“Changes In electric usage by end-use customers from their normal
consumption patterns in response to changes in the price of electricity
over time, or to Incentive payments designed to induce lower
electricity use at times of high wholesale market prices or when
system reliability 1s jeopardized”

Background

. i [ Energy Storage o ,
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Direct-load Control Technique

Background Utility remotely controls customers’

I registered appliances/thermostats.
DSM Technology

® Direct-load control
@

ENERGY RUSH
HOUR
Should your Nest stop
automatic adjustments
for this rush hour? /

DON'T STOP
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Background

I
DSM Technology

® Direct-load control
® | oad-limiter technique
@
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Load Limiter Technique
Customer agrees to react
to DR by limiting thelr

total electricity usage

Energy VE
Platfor




Background

I
DSM Technology

® Direct-load control
® | oad-limiter technique
® Price-based technigques
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$/ Kwh

$/ Kwh

Price-based Technique (e.g. ToU)

Electricity cost Is set high at peak load time
and low at off-peak time, to encourage
customers to engage in load management.

B Off-Peak On-Peak
Weekday Sat./Sun./Holiday
June-Sept. $0_91 June-Sept.
$0.66 . $0.66
12am 10am 105n| 12am 12;m
Weekday Sat./Sun./Holiday
OCt . “May $0 83 OCt . -May
$0.69 . $0.69
12'am 10'am 105m 12'am 12am

$/ Kw

$/ Kw

B Off-Peak

Weekday

123m

Weekday
Oct.-May

123m

June-Sept.

8;m

6p:m 1dpm 12am

8;m

Partial-Peak

$8.17
$17.51

$8.17
$11.34

Gp;n 10:pm 12am

On-Peak

Sat./Sun./Holiday
June-Sept.

123m

Sat./Sun./Holiday
Oct.-May

$10.09

12;m



Applicability of DSM technigues has been improved by

Background integrating ESS in a distributed fashion.
.
DSM Technology . Electricity cost variation

® Direct-load control . Modern Sthgge SyStemS

® [oad-limiter technique

® Price-based technigques

Storage-based

Off- Peak
DSM Peak Time
Time
R0 Y4 57
. ,
3| vy

prescriptive d? T| me

COLUMBIA
UNIVERSITY




e Stable et al. (2013) formulated the integration of electrical energy storage systems in
commercial buildings as a mixed-integer linear program to minimize energy cost and CO2
emissions.

therature * Dufo-Lopez, (2015) formulated a new model to find the optimal nominal capacity of the

electrical storage under a real-time pricing tarift.

 Zheng et al. (2015) demonstrated cost savings of different storage systems (flywheels,
conventional, advanced and flow batteries) in a household with a ToU or peak-demand
based New York City tariff structure through simulations.

 Wang et al. (2016) investigated the integration of stationary battery systems and electric
vehicles in a commercial building by formulating a price-based DSM as a mixed-integer
linear programming problem.

While there has been substantial research on optimizing
the energy consumption and peak demand through MPC

algorithms,
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Objective The primary objective of this study is to design a
[

novel based on particle swarm
optimization algorithms that

e Minimize

e Minimize :

o Quantify and
e Preserving




Conducting the size (i.e.,, hnominal capacity) optimization
of the battery storage by minimizing

wgy Electricity Cost

Passive DSM Optimization Equipment ‘nStQHQtiOﬂ COSt
FiInancing Cost
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Conducting the size (i.e.,, hnominal capacity) optimization
of the battery storage by minimizing

Meth I _ o
mgy “lectricity Cost MODEL PREDICTIVE

Passive DSM Optimization :quipment ‘ﬂStOHOtiOﬂ COSt CONTROL - DSM
— - Miwin:E, +E.
-inancing Cost

elec

Y

Battery Operational Constraints

Historical

Histori
Weather
%* Load
Optimal S | h(‘ OPTIMAL
ptimal Sizing of the
Battery Storage System STORAGE

CAPACITY

onthly Tarif
Model

Battery
itorage Syste
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Methodology

Passive DSM Optimization
® Capacity Optimization
[ _

[ _
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Historical
Load Data

Historical
Weather Data

RN

Optimally Sizing of the
Battery Storage System

A
Battery
Storage System

Monthly Tariff Model

B Off-Peak On-Peak
Weekday Sat./Sun./Holiday

Summer Mos. $091

$0.66

Summer Mos.

I $0.66

12'am 10'am 10em 12am 12'am

B Off-Peak

Weekday $81 7
Summer Mos. $1751

Partial-Peak On-Peak

Sat./Sun./Holiday
Summer Mos.

$22.04 $22.04

1 2:am 8 ;m Gp:m 1 O:pm 12 am 1 2:am

12

A* = argmax( Z [P(GX/O) - R(A) = PG, (X7 A))] >

n=1

subject to . Battery storage system constraints
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Building

Load
Methodology Transfer st FZ) RoundTrip Efficiency Ik 180%
. ARSI EREh LR |y . [nverterEfficiency 7] 195% ___
Passive DSM Optimization f T ' _ée_lqltf‘ f]; Discharge ____. 209000 -----
I I
® Capacity Optimization ﬂ Max. Battery life span 15Y ‘
® Dispatch Strategy giziggle’ * - \ L Auto- Cost of Battery _'§200/kWh :
ey - : — ~— transformer | \Max. Rate of Charge R

¢ Lithium-ion Inverter ge fc

Charging mode; E(D) < 1(0) SoC(1) = SoC(t — 1) + min(| E(t) = T() |, R¢) X At X o/ A
: : E(r)—17(z
Discharging mode; E(t) > I'(t) SoC(t) = SoC(t — 1) — min( B0 - T@) ,Rp) X At X np/ A
"D
Neutral mode; E(t) = I'(t) or E(t) =0 SoC(t) = SoC(t— 1)

k’ State of Charge
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Methodology
Switch
I @ -----mmmmnaaaas
Passive DSM Optimization T %
® Capacity Optimization Controller
® Dispatch Strategy E 373 + 7+ _\ |_x—YAuto-

N\ I
"TY |1|—}|| ormexy

“J

‘ Degradat|0n Ll‘thlum_lon Inver 1;H|

Battery degradation is a complex non-linear process that is
dependent on many factors:

Calendar aging
Number of charge/discharge cycles
Depth of discharge

We approximate the non-linear degradation process by a two-
p orescriptive segment piecewise linear function of charge throughput.
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. This step performs concurrent one-day-ahead
Methodology optimization of the setpoint temperature profile
I .

and dispatch strategy of the battery.

Passive DSM Optimization
JeEE ey PIl - [ he objective of this step is to minimize the electricity cost

® Dispatch Strategy subject to the human comfort and storage constraints.
® Degradation

Real-time DSM Opt.
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This step pertorms concurrent one-day-ahead

Methodology optimization of the
I
olgle of the battery.

Passive DSM Optimization

Jetuea bzl - [ he objective of this step Is to minimize the electricity cost

® Dispatch Strategy subject to the human comfort and storage constraints.
® Degradation

Real-time DSM Opt.

1-day-aheaa
o Forecasted Weather —
ML-based Building Energy Model —‘
Daily Set-point
Optimcﬂ DO”y Temperature

Set-point Temp.
P P Predictive DSM Optimization <—

Optimal Daily ! !
Taal Monthly Tariff Battery
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Min: H(X o)
Methodology Lo X< Xy < X

e Thermal Comfort const.

Passive DSM Optimization

® Capacity Optimization [ g

® Dispatch Strategy H(X temp) — min [P(Gk(XTEMpa r A*))]

® Degradation b
ST . Battery Storage Constraints

Real-time DSM Opt.
Hierarchical opt N

i Hourly temp. ToU Tarif
Contr?I-P0|nt : Model : Energy
AN

N

’ |X14 PEC — Z I’e’kaAl‘ ____________ o

2 max{r; X G}, k € Z y,and k <N

kCT™
mlC

Temperature [C]
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Testbed

Plug loads for the case study building
Heiaht = 3 m electric load (all for 4 zones). N denotes
the number of people in the office and
| .. ] denotes the floor function.

*GA: Glazing Area

Equipment Quantity Peak Fraction of Fraction of time
power time used used (not
[W/unit] (occupied) occupied)

Computer (server) 65 0.75 0.75 X 40%
Computer 65 0.75 0.75 X 40%
(desktop)

Computer (laptop) 19 0.75 0.75 X 40%
Monitor (desktop) 35 0.75 0.75 X 40%
Monitor (server) 35 0.75 0.75 X 40%
Photo copier 0.75 0.75 X 40%
Fax 35 0.75 0.75 X 40%
Refrigerator 52 0.90 0.90

Water cooler 0.75 0.75 X 40%
Coffee maker 0.50 0.50 X 40%
Misc. loads (e.g., 0.75 0.75 X 40%

o o network
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Comparison of load profiles simulated for the case
study office building versus observed data.

Emprical Data Set I Emprical Data Set I
- = Emprical Data Set Il - = Emprical Data Set I
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Breakdown of electricity consumption in various US

building types, by end-use.
Testbed

Electricity end use Office Commercial Commercial in Case study
[all figures in %, for  building North East US building
2012]

Lighting
Equipment

Ventilation

Cooling

Refrigeration &
cooking

Fans

Other

m® prescriptive GLD
COLUMBIA

Association of Ener ngineers U N I V E Rg I T Y




Determining the optimal battery size (passive DSM
optimization)

ReSUItS & B Off-Peak On-Peak B Off-Peak Partial-Peak On-Peak
- e
D. . = Weekday Sat./Sun./Holiday _ | weekday $8.17 Sat./Sun./Holiday
Isc u SS I O n é June-Sept. $0_91 June-Sept. é June-Sept. $17.51 June-Sept.
” | - ] ls220e  [fs20e
12am 10am 109:"‘ 12am 12am 125am B;m Gpsm 105pm 152am 125am
< Weekday za:./S;n./Holiday _ | Weekday $8.17 Sat./Sun./Holiday
é Oct.-May $0.83 ct.-May é Oct.-May $11.34 Oct.-May
>3 N $0.69 I $0.69 22N $10.09 $10.09
12am 10am 109:"1 12am 12am 12§am 8;m Gpsm 105pm 152am 125am
12
_ wlo w
A% = argmax( Y [P(Gn ) — R(A) — P(G(T*, A))] )
=

subject to . Battery storage system constraints

[#* = argmax(l]j’(G,YlV/o) - R(A) — P(G/(T,, A))>

A€ Z,y A< A
Y rescriptivi Gb
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Optimal demand limits for each month as determined via the
passive DSM algorithm.

Demand further vary with time of day to optimize vis- a-vis the

Results & three time windows in the tariff:

Discussion Off peak hours (OPh),
Peak hours (Ph), and

Partial peak hours (PPh).

Month

January (n = 1)
February (n = 2)
March (n = 3)
April (n = 4)
May (n = 5)

June (n = 6)

July (n = 7)
August (n = 8)
September (n = 9)
October (n = 10)
November (n = 11)
December (n = 12)
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Results &

— = = = No DSM Action Predictive DSM Optimization === State of Charge
Discussion
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Results &

I
Discussion

Association of Energy Engineers
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» Grid peak load reduction in summer months via PDSMO

Results &
e
Discussion 26.3 7 Peal{%gdqflfﬁftion 30% Peak
Load Reduction Load Reduction iz(’).g;/o Rlzﬁ?lthion 24.4% Peak
) 50 | \ \ / \ A/Load Reduction
= = { 0 v Ot b s LG
v [, L ‘ MAMM“‘A“ M (i W W i W it Wl | “hf Hf n | IM WH Mb |
3 20 | 1 . |
10 ' AR "“MJ \ "umuﬂlmw MHMW“M t HH)\M“"M UI“MMM"} “n““h MH"“\M L wlnﬁmhhmuAMMA
May Jun | July Aug f Sept

No DSM Action

mmmmm Predictive DSM Opt. Peak Day
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o Breakdown of total annual costs

Results &
S Summer demand charge [0 Summer energy charge

B Winter demand charge Il Winter energy charge

DiSCUSSiOn Storage financing cost

~6.5% Elec. cost reduction
~$-226 Profit ~10.7% Elec. cost reduction
~$722 Profit

~2.2% Elec. cost reduction
~$508 Profit
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$7,438 $6,968
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o Human thermal comfort in different DSM approaches

Results &
e

Discussion
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T (A [T} [-MM - A novel DSM framework that concurrently optimizes
—= =

Remarks

the electric and thermal storage in oftice builldings

where d and/or demand-based
rate structure is developed.

. The initial implementation indicates that PDSM reduces
the maximum monthly grid peak load by up to

. The (demand and energy
charges) significantly by , enough
to more than offset the equipment cost.
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