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Up to 20% of the total installed electricity 
generation capacity in the United States is 
dedicated to meeting peak loads (defined as in use 
only 5% of the time.
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Demand load vs Capacity
Building Sector Contribution 
Demand/Supply Management



Demand and supply-side management techniques 
can play essential roles in smoothing peak demands 
and thus increasing the efficiency and reliability of 
the grid system.
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The building sector contributes up to 75% of all 
electricity usage and is a significantly larger 
contributor, proportionately, to peak demand. Motivation
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Background “Changes in electric usage by end-use customers from their normal 
consumption patterns in response to changes in the price of electricity 
over time, or to incentive payments designed to induce lower 
electricity use at times of high wholesale market prices or when 
system reliability is jeopardized” 

Demand Side Management (DSM)

Peak Shaving Vally FillingLoad Shifting



Direct-load Control Technique

DSM Technology
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Storage-based  
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Utility remotely controls customers’ 
registered appliances/thermostats.



DSM Technology

Background

Direct-load control
Load-limiter technique 
Price-based techniques

Storage-based  
DSM

Load Limiter Technique
Customer agrees to react  
to DR by limiting their 
total electricity usage ADR Program VTN 

Platform

Building automation systems 35

The management level network involves computers and network control 
stations. The devices at this level communicate based on Ethernet, usually 
nowadays providing a very high communication speed. The computer sta-
tions connected at this level provide central management and information/
data storage as well as a platform and interface for operators.

Figure 3.7 shows a typical configuration and the function components of 
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Figure 3.6 A typical network architecture of BAS.
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Storage-based  
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DSM Technology
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Price-based Technique  (e.g. ToU) 
Electricity cost is set high at peak load time 
and low at off-peak time, to encourage 
customers to engage in load management.



• Electricity cost variation 
• Modern storage systems

Storage-based  
DSM

Background
DSM Technology

Direct-load control
Load-limiter technique 
Price-based techniques

DSM using Energy Storage Systems (ESS)
Applicability of DSM techniques has been improved by 
integrating ESS in a distributed fashion. 



Literature

Storage-based DSM
• Stable et al. (2013) formulated the integration of electrical energy storage systems in 

commercial buildings as a mixed-integer linear program to minimize energy cost and CO2 
emissions.

• Dufo-Lopez, (2015) formulated a new model to find the optimal nominal capacity of the 
electrical storage under a real-time pricing tariff.

• Zheng et al. (2015) demonstrated cost savings of different storage systems (flywheels, 
conventional, advanced and flow batteries) in a household with a ToU or peak-demand 
based New York City tariff structure through simulations. 

• Wang et al. (2016) investigated the integration of stationary battery systems and electric 
vehicles in a commercial building by formulating a price-based DSM as a mixed-integer 
linear programming problem.

While there has been substantial research on optimizing 
the energy consumption and peak demand through MPC 
algorithms, a relatively limited number of them have 
focused on approaches for adjusting zone setpoint 
temperature



Objective The primary objective of this study is to design a 
novel DSM framework based on particle swarm 
optimization algorithms that  

• Minimize grid load peaks 
• Minimize electricity cost, 
• Quantify system payback time and  
• Preserving occupant comfort.



Passive DSM Optimization
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Conducting the size (i.e., nominal capacity) optimization 
of the battery storage by minimizing 

Electricity Cost 
Equipment Installation Cost 
Financing Cost 
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Conducting the size (i.e., nominal capacity) optimization 
of the battery storage by minimizing 
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Round Trip Efficiency 80%
Inverter Efficiency 95%
Depth of Discharge 0.90
Cycle Life 4000
Max. Battery life span 15Y
Cost of Battery $200/kWh
Max. Rate of Charge 1C

Properties

Charging mode; E(t) < Γ(t)

Discharging mode; E(t) > Γ(t)

Neutral mode; E(t) = Γ(t) or E(t) = 0

Battery Dispatch Strategy 

SoC(t) = SoC(t − 1) + min( |E(t) − Γ(t) | , RC) × Δt × ηC /Λ

SoC(t) = SoC(t − 1) − min( |E(t) − Γ(t) |
ηD

, RD) × Δt × ηD/Λ

SoC(t) = SoC(t − 1)

ηR
ηC
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State of Charge 
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Storage CapacityΛ
Building Load

Demand Limit

E
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Battery Degradation

• Battery degradation is a complex non-linear process that is 
dependent on many factors: 

             Calendar aging 
             Number of charge/discharge cycles 
             Depth of discharge 

• We approximate the non-linear degradation process by a two-
segment piecewise linear function of charge throughput. 
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Real-time DSM Optimization
• This step performs concurrent one-day-ahead 

optimization of the setpoint temperature profile 
and dispatch strategy of the battery.  

• The objective of this step is to minimize the electricity cost 
subject to the human comfort and storage constraints. 



Real-time DSM Optimization
• This step performs concurrent one-day-ahead 

optimization of the setpoint temperature profile 
and dispatch strategy of the battery.  

• The objective of this step is to minimize the electricity cost 
subject to the human comfort and storage constraints. 
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Fig.13 : Optimal DR results under different scenarios: (a) peak shaving using battery storage; (b)  load 
shifting and peak shaving using pre-cooling and battery storage
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Testbed

otherwise. The power load of ventilation systems depends on different
factors including flow rate, flow resistance, and fan system efficiency.
Specific Fan Power (SFP) is a useful metric for these factors. SFP is a
measure of required electric power for the amount of circulated air, i.e.
SFP= electric load (kW)/volume of circulated air (m3). Assuming a
typical SFP of 1.65 kW/m3/sec [61], the electric load of the ventilation
system in the building is 2.2W/m2 and 1.4W/m2 otherwise [62]. The
electricity consumption of a furnace fan motor (QFan in Wh) throughout
the heating season follows the method described by Aldrich and Wil-
liamson [63] and is approximated by QFan= 0.0101 Wh/
kJ×QHeat+ 4 Wh, where QHeat is the energy required for space
heating (in kJ) from the building thermal simulation.

2.6.8. Validation of building electricity consumption model
We validated the simulated electric loads along four criteria, in

order to validate that the model accurately predicts the electric load of
a typical office building in New York City, US.

The four criteria are: (i) breakdown of electricity consumption by
the major end-use components; (ii) electricity use intensity (EUI) me-
tric; (iii) peak and average plug and process load (PPL) intensities; and
(iv) daily load profiles. For this analysis, the load data was generated by
running the simulation model using the 2012 weather data (from
NSRDB [48] for LaGuardia Airport, New York) with the fixed setpoint
temperature based on the ASHRAE Standard [34]. Electric loads were
simulated in 15min intervals.

Validation criterion 1: As listed in Table 3, 83% of all office
building electricity consumption is simulated in the case study office
building (only the 17% “other” category is not captured). This includes

lighting, cooling, ventilation and furnace fans, office equipment, re-
frigeration, and cooking devices. We find that the portions of simulated
electricity consumption by end-use in the case study building are con-
sistent with benchmarks reported in the US National Energy Review for
various office building types [64]. The small discrepancy in cooling and
ventilation consumption between the office building in this case study
and the US national reference can be primarily attributed to the climate
zone chosen for the case study (US Northeast); corresponding differ-
ences can also be observed between the reported commercial end-use
electricity consumption of the entire US and that of the US Northeast.

Validation criterion 2: The second criterion is the energy use in-
tensity (EUI), defined as the energy used per building floor area (per
year). For typical office buildings in the US, a benchmark metric for a
median site EUI ranges from approximately 500 to 761MJ/m2 [65]. In
New York City, 52% to 79% of the energy portfolio for office buildings
comprises electricity, and the EUI for the electricity portion of total
building energy ranges from 250 to 602MJ/m2. The electricity EUI in
our case study office building is 482MJ/m2 (average across all 4 sea-
sons), i.e., consistent with the recommended site EUI range for office
buildings in the US.

Validation criterion 3: Plug loads account for about 20% of elec-
tricity use in office buildings, and hence have significant impact on the
load profile during the on-peak time. The plug process load (PPL) si-
mulated with our model for the case study (Table 2) building reaches
peaks of 5.1W/m2 at maximum occupancy (before and after the lunch
break), with a daily average of 2.8W/m2. These simulation results
conform with the average and peak plug process load (PPL) for offices
in the US (offices without laboratories or data centers) which are
5.3W/m2 and 3.0W/m2, respectively [66].

Validation criterion 4: Finally, the load profile was further vali-
dated by comparing typical simulated daily and weekly summer and
winter load patterns with those of an empirical dataset on 2012 elec-
tricity consumption for two commercial/office buildings in the same
climate zone (specifically cases No. 9 and No. 12 from ENERNOC’s

Fig. 3. Comparison of load profiles simulated for the case study office building versus observed data.

Table 2
Plug loads for the case study building electric load (all for 4 zones). N denotes
the number of people in the office and ⌊…⌋ denotes the floor function.
Equipment Quantity Peak

power
[W/unit]

Fraction of
time used
(occupied)

Fraction of time
used (not
occupied)

Computer (server) 2 65 0.75 0.75× 40%
Computer

(desktop)
⌊N/2⌋ 65 0.75 0.75× 40%

Computer (laptop) ⌊N/2⌋ 19 0.75 0.75× 40%
Monitor (desktop) ⌊N/2⌋ 35 0.75 0.75× 40%
Monitor (server) 2 35 0.75 0.75× 40%
Photo copier 1 1100 0.75 0.75× 40%
Fax 2 35 0.75 0.75× 40%
Refrigerator 2 52 0.90 0.90
Water cooler 2 350 0.75 0.75× 40%
Coffee maker 2 1050 0.50 0.50× 40%
Misc. loads (e.g.,

network
routers)

N 4 0.75 0.75× 40%

Table 3
Breakdown of electricity consumption in various US building types, by end-use.
Electricity end use
[all figures in %, for
2012]

Office
building

Commercial Commercial in
North East US

Case study
building

Lighting 39 17 18 39
Equipment 15 14 15 16
Ventilation 9 16 18 14
Cooling 14 15 11 10
Refrigeration &

cooking
5 18 17 3

Fans 1 0.5 0.5 1
Other 17 19.5 20.5 17

C.J. Meinrenken and A. Mehmani $SSOLHG�(QHUJ\������������������

�

Plug loads for the case study building 
electric load (all for 4 zones). N denotes 
the number of people in the office and 
⌊…⌋ denotes the floor function.



Testbed

otherwise. The power load of ventilation systems depends on different
factors including flow rate, flow resistance, and fan system efficiency.
Specific Fan Power (SFP) is a useful metric for these factors. SFP is a
measure of required electric power for the amount of circulated air, i.e.
SFP= electric load (kW)/volume of circulated air (m3). Assuming a
typical SFP of 1.65 kW/m3/sec [61], the electric load of the ventilation
system in the building is 2.2W/m2 and 1.4W/m2 otherwise [62]. The
electricity consumption of a furnace fan motor (QFan in Wh) throughout
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otherwise. The power load of ventilation systems depends on different
factors including flow rate, flow resistance, and fan system efficiency.
Specific Fan Power (SFP) is a useful metric for these factors. SFP is a
measure of required electric power for the amount of circulated air, i.e.
SFP= electric load (kW)/volume of circulated air (m3). Assuming a
typical SFP of 1.65 kW/m3/sec [61], the electric load of the ventilation
system in the building is 2.2W/m2 and 1.4W/m2 otherwise [62]. The
electricity consumption of a furnace fan motor (QFan in Wh) throughout
the heating season follows the method described by Aldrich and Wil-
liamson [63] and is approximated by QFan= 0.0101 Wh/
kJ×QHeat+ 4 Wh, where QHeat is the energy required for space
heating (in kJ) from the building thermal simulation.

2.6.8. Validation of building electricity consumption model
We validated the simulated electric loads along four criteria, in

order to validate that the model accurately predicts the electric load of
a typical office building in New York City, US.
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the major end-use components; (ii) electricity use intensity (EUI) me-
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temperature based on the ASHRAE Standard [34]. Electric loads were
simulated in 15min intervals.
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ventilation consumption between the office building in this case study
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ences can also be observed between the reported commercial end-use
electricity consumption of the entire US and that of the US Northeast.
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climate zone (specifically cases No. 9 and No. 12 from ENERNOC’s
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Table 2
Plug loads for the case study building electric load (all for 4 zones). N denotes
the number of people in the office and ⌊…⌋ denotes the floor function.
Equipment Quantity Peak

power
[W/unit]

Fraction of
time used
(occupied)

Fraction of time
used (not
occupied)

Computer (server) 2 65 0.75 0.75× 40%
Computer

(desktop)
⌊N/2⌋ 65 0.75 0.75× 40%

Computer (laptop) ⌊N/2⌋ 19 0.75 0.75× 40%
Monitor (desktop) ⌊N/2⌋ 35 0.75 0.75× 40%
Monitor (server) 2 35 0.75 0.75× 40%
Photo copier 1 1100 0.75 0.75× 40%
Fax 2 35 0.75 0.75× 40%
Refrigerator 2 52 0.90 0.90
Water cooler 2 350 0.75 0.75× 40%
Coffee maker 2 1050 0.50 0.50× 40%
Misc. loads (e.g.,

network
routers)

N 4 0.75 0.75× 40%

Table 3
Breakdown of electricity consumption in various US building types, by end-use.
Electricity end use
[all figures in %, for
2012]

Office
building

Commercial Commercial in
North East US

Case study
building

Lighting 39 17 18 39
Equipment 15 14 15 16
Ventilation 9 16 18 14
Cooling 14 15 11 10
Refrigeration &

cooking
5 18 17 3

Fans 1 0.5 0.5 1
Other 17 19.5 20.5 17
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break), with a daily average of 2.8W/m2. These simulation results
conform with the average and peak plug process load (PPL) for offices
in the US (offices without laboratories or data centers) which are
5.3W/m2 and 3.0W/m2, respectively [66].

Validation criterion 4: Finally, the load profile was further vali-
dated by comparing typical simulated daily and weekly summer and
winter load patterns with those of an empirical dataset on 2012 elec-
tricity consumption for two commercial/office buildings in the same
climate zone (specifically cases No. 9 and No. 12 from ENERNOC’s
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Determining the optimal battery size (passive DSM 
optimization)

Λ* = argmax(
12

∑
n=1

[ℙ(Gw/o
n ) − ℝ(Λ) − ℙ(Gw

n (Γ*n , Λ))])

Λ ∈ ℤ>0, Λ ≤ Λmax

Γ*n = argmax(ℙ(Gw/o
n ) − ℝ(Λ) − ℙ(Gw

n (Γn, Λ)))
subject to : Battery storage system constraints

ℙ( . ) = PEC( . ) + PDC( . )



Results & 
Discussion 

• Optimal demand limits for each month as determined via the 
passive DSM algorithm.  

• Demand further vary with time of day to optimize vis- à-vis the 
three time windows in the tariff:  

         Off peak hours (OPh),  
         Peak hours (Ph), and  
         Partial peak hours (PPh). 

October to May, where little or no cooling is required, are not materi-
ally affected by weather. The following results therefore focus on the
4months June to September (which are also the designated “summer”
months in the tariff). However, reported total electricity costs and
achievable annual profits and payback time were modeled for year-
round, 12month operation.

To illustrate the effects of the concurrent DSM day by day, Fig. 7
shows the optimized setpoint temperature profile during a week in June
(temperature averaged across the 4 zones in the case study building).
Ambient temperature and mean radiant temperature, relevant for oc-
cupant comfort (Section 2), are also shown. The corresponding optimal
grid load profile and the building's native load profile (defined as grid
load with no DSM action) are illustrated in Fig. 8.

As illustrated in Fig. 7 and explained in Section 2, the one-day-
ahead setpoint temperature optimization is only performed on days on
which the model-predicted demand peak is higher than the maximum
grid load in the current billing cycle up to that day. For example, the
temperature profile optimization was not performed on Saturday (06/
16) since the predicted daily peak electricity consumption (i.e., 20 kW
as seen in Fig. 8) is lower than the current maximum grid load (i.e.,
23 kW). The rationale for this approach is that the particular electricity
tariff chosen for the case study determines demand costs based on the
highest peaks in any given 1-month billing period (regardless of how
long or often that peak is reached; details see Section 2). For the real-
time DSM, the total number of full battery cycles in 2014 is 231, re-
sulting in a storage lifetime capped by the maximum battery life span
(set to 15 years).

Interestingly, it is observed that the daily optimal setpoint tem-
perature profile starts with a precooling of the building even before
occupants arrive. The resulting average occupant thermal comfort
index in four thermal zones in the form of 100-WPPD, when the optimal
temperature profile is used, is also illustrated in Fig. 7. The closer the
average thermal comfort is to 100, the better the thermal condition is
for occupants. The discrepancy between the on-peak and off-peak en-
ergy rates (i.e., charges for kWh) in the case study’s tariff structure is
small. The off peak rate is 73% of the on peak rate. This is almost equal
to the round trip inverter and charging efficiency (72%), meaning that
one kWh used by the building during the day costs almost the same,
regardless of whether is comes from the grid directly or from the bat-
tery that was charged during off peak times. Consequently, the battery
dispatch strategy should be designed mainly based on the demand
charge (i.e., charges for kW). To do this, the daily demand limits are
bound by the maximum grid loads from the beginning of the billing
period until the current day in different time periods of the day (i.e.,
Γm≥Qm+ in Eq. (3)). The effect of this boundary constraint on daily
demand limits can be seen in Fig. 8.

3.4. Concurrent versus standalone DSM approaches

In order to demonstrate the value of employing a control framework
that can concurrently optimize, in real time, both the temperature
setpoints and the demand limits observed for the battery dispatch, the
performance (i.e., cost and grid peak reduction and human comfort) of
the concurrent DSM approach is compared with the performance of two
standalone DSM approaches:

Battery-only DSM: This approach relies solely on static demand
limits obtained via the passive optimization on 2012 weather data. The
approach assumes no thermal storage strategies such as pre-cooling,
therefore temperature setpoints are not optimized in real time but set to
the standard ASHRAE setpoints used during passive DSM.

Temperature-only DSM: In this approach, the daily temperature
setpoints are optimized to minimize electricity cost while satisfying
human comfort (as in real-time DSM). However, no battery is present
(i.e., battery capacity and any associated costs set to zero).

In order to provide a fair comparison between the tariff and demand
reduction achievable in the three DSM approaches (see below), all three
use 2014 weather data (from NSRDB [48] for LaGuardia Airport, New
York) when simulating the thermal behavior and the electricity con-
sumption of the case study building. Concurrent DSM and battery-only

Table 4
Optimal demand limits for each month as determined via the passive DSM al-
gorithm (Λ*= 55 kWh). Demand further vary with time of day to optimize vis-
à-vis the three time windows in the tariff (Section 2.5): Off peak hours (OPh),
peak hours (Ph), and partial peak hours (PPh).
Month ΓOPh [kW] ΓPh [kW] ΓPPh [kW]

January (n= 1) 18.46 19.16 n/a
February (n=2) 18.49 18.88 n/a
March (n= 3) 16.62 18.70 n/a
April (n=4) 16.36 18.56 n/a
May (n= 5) 24.85 28.31 n/a
June (n= 6) 28.26 32.54 11.95
July (n= 7) 30.39 33.55 20.58
August (n= 8) 23.26 31.73 22.98
September (n=9) 18.24 29.11 19.23
October (n= 10) 18.24 18.60 n/a
November (n=11) 18.44 18.95 n/a
December (n=12) 18.59 19.05 n/a

Fig. 7. Zone-average optimal setpoint temperature profile, ambient tempera-
ture, mean radiant temperature, and average occupant comfort during a typical
week in June.

Fig. 8. Optimized grid load (solid line) versus native load (dashed line) profile,
optimal battery dispatch strategy, and State of charge (SoC) during a typical
week in June. Light and dark gray shading represent the battery discharging to
building and charging from grid, respectively.
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significantly more than is achievable via battery-only DSM or tem-
perature-only DSM alone. In urban environments such as New York
City, the electricity grid on hot and humid summer afternoons is often
pushed to its limit because of the combined cooling loads of hundreds of
office buildings whose afternoon peaks occur at similar times. As such,
26% peak reduction means a dramatic improvement of grid stability
and also will help reduce air pollution from often dirty peak generation
capacity.

The annual electricity cost (demand and energy charges combined)
is also reduced significantly, by 10.7%, enough to more than offset the
equipment cost (purchase, installation, financing), and thus yielding an
overall profit for building operators (3.2% of cost without any DSM).
System payback time is about 5 years. This provides a clear economic
incentive for building operators and shows that market-based in-
centives for smarter grid operation such as ToU tariffs with demand
charges are an effective tool towards a more reliable and less polluting
electricity grid.

Due to the a priori high dimensional space of the concurrent opti-
mization, a crucial characteristic of our framework is its computational
efficiency. In our case study, optimization of one-day-ahead tempera-
ture setpoints (for four separate zones) and battery dispatch takes ap-
proximately 1.5 h (standard computer with 2.5 GHz Intel Core i5 CPU
and 8 GB memory). For larger office buildings, specifically with more
separately controlled zones, faster processors and parallel computing
for the thermal models in the different zones could be used to still keep
the total required computing time within just a few hours. This is
crucial as it enables actual implementation of the technology in a
commercial building by running predictive real-time optimization
overnight (before pre-cooling commences in the early morning hours),
using one-day-ahead weather forecast data. Future work may be carried
out in which more computationally efficient building electricity con-
sumption models, such as data-driven surrogate models, and other
optimization methods (e.g., genetic algorithms (GA) in lieu of PSO) will
be implemented and evaluated to further decrease the computational
cost.

A response to the market-based mechanisms such as ToU tariffs, the
current version of our framework, mathematically speaking, optimizes
solely towards maximum profit for building operators. As such, the
achieved grid peak load reduction is a welcome “side effect” (but de-
monstrates that the tariff is adequately designed to incentivise this ef-
fect). Future work may optimize more directly for peak grid load and
grid carbon intensity reductions by optimizing cost and the system’s
carbon footprint in combination [73,74]. This would ideally include
projections of future reductions in net grid carbon intensity through

various carbon removal schemes [75,76] and low-cost renewable en-
ergy generators. Modifications and further improvements of our fra-
mework based on a system-of-systems hierarchical formulation could
further advance the application of DSM techniques in the context of
energy sharing in smart, connected communities with energy storage
systems [77], more detailed modeling of the techno-economic feasi-
bility of different battery chemistries [78] (including the storage ca-
pacity in electric vehicles [79]), and assigning the use of the different
zones in the building to different user types based on their specific
thermal preference [80].
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office buildings whose afternoon peaks occur at similar times. As such,
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• Human thermal comfort in different DSM approaches



Concluding 
Remarks

• A novel DSM framework that concurrently optimizes 
the electric and thermal storage in office buildings 
where a Time-of-Use (ToU) and/or demand-based 
rate structure is developed.  

• The initial implementation indicates that PDSM reduces 
the maximum monthly grid peak load by up to 26% 

• The annual electricity cost (demand and energy 
charges) is also reduced significantly by 10.7%, enough 
to more than offset the equipment cost.
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