
Contents lists available at ScienceDirect

Applied Energy
journal homepage: www.elsevier.com/locate/apenergy

Concurrent optimization of thermal and electric storage in commercial
buildings to reduce operating cost and demand peaks under time-of-use
tariffs
Christoph J. Meinrenken⁎, Ali Mehmani
Earth Institute & Data Science Institute, Columbia University, 120 W 120th Street, Mudd 918, New York, NY 10027, USA

H I G H L I G H T S

• Market-tariff-induced DSM can reduce electric grid stress and emissions.• We introduce a novel DSM framework that uses one-day-ahead weather forecasts.• Framework optimizes temperature setpoints and battery dispatch in real time.• Peak loads and electric bills reduced substantially.• Results imply substantial grid stress alleviation for urban environments.
A R T I C L E I N F O

Keywords:
Smart grid
Grid-efficient building
Building energy modeling
Demand response
Energy storage
Time-of-use tariff
Pre-cooling
Battery dispatch
Demand-side management
Real-time control optimization
Particle swarm optimization

A B S T R A C T

Demand-side management (DSM) in response to market-based electricity tariffs can potentially increase the
efficiency and reliability of the electric power grid. This study introduces a novel, one-day-ahead DSM frame-
work which optimizes temperature setpoints and battery dispatch in office buildings, subject to a time-varying
and/or demand-based electricity tariff. To reflect real world implementation, our framework operates in two-
steps. First, during the passive, battery-only DSM optimization, historical weather and electricity load data for a
given building are used to determine its optimal battery capacity. Second, once the battery has been installed, a
one-day-ahead, real-time DSM algorithm optimizes both the building’s daily temperature setpoints and the
battery's charge/discharge pattern. The optimization objective is to minimize the total operating cost (tariff
charges and battery system) while still satisfying occupants’ thermal comfort. Using a case study with a medium-
fidelity electric load model for a standard office building, the performance of the proposed framework is vali-
dated by quantifying savings in operating cost, reduction of monthly grid peak loads, and the achieved human
occupant comfort. To illustrate the advantage of optimizing temperature setpoints and battery dispatch con-
currently, the combined performance is compared with that achieved by standalone DSM (i.e., using only battery
dispatch or only temperature setpoints). We found that concurrent optimization can reduce a building's monthly
peak demand on the grid by up to 26%. Electricity tariff charges are reduced by 11%, more than is required to
offset storage costs, thus providing an overall profit to building operators who use such DSM. Payback time is
approximately 5 years.

1. Introduction

1.1. Overview

High electric loads in buildings at certain times of the day, also
referred to as peak demands, place great stress on the electricity grid
and require environmentally and economically inefficient peak gen-
eration capacity to meet these peak demands [1]. As such, up to 20% of

the total installed electricity generation capacity in the United States is
dedicated to meeting peak demands (defined as in use only 5% of the
time) [2]. The building sector contributes up to 75% of all electricity
usage and is a disproportionally large contributor to peak demand [3].
Market-based time-of-use tariffs that incentivize demand-side manage-
ment techniques (DSM) [4–6], together with the integration of elec-
tricity storage systems [7], can play an essential role in reducing peak
demands and thus increasing the efficiency and reliability of the grid.
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Here, we focus on commercial building DSM with one-day-ahead op-
timization of both the building’s air conditioning (e.g., pre-cooling) and
battery dispatch (e.g., charging during off-peak times to use during
peak times). The objective is to achieve superior peak load reduction
while also reducing the building's electricity bill enough to fully offset
required battery costs, thus leading to lower overall costs for building
operators.

1.2. Context of prior DSM studies

DSM, here defined as deliberate changes in electric load profiles in
order to lower tariff costs and grid stress, can be achieved through the
application of a variety of techniques, including [8,9]: (i) direct-load
control technique in which a utility operator remotely controls custo-
mers’ electrical equipment (e.g., heating and cooling loads) on short
notice to reduce peak load [10]; (ii) load limiter technique in which the
customer agrees to react to peak load by limiting their total electricity
usage [11]; (iii) price-based (e.g., ToU) technique in which the electricity
cost is set high at peak load time and low at off-peak time, to encourage
customers to engage in load management. In this last technique, ToU
electricity cost is usually designed to reflect the utility’s investment cost
structure. Load management refers to different approaches that control
or schedule curtailable and deferrable loads (e.g., changing the tem-
perature set points of air conditioners, dimming lighting, or charging
electric vehicles), using building automation systems to achieve de-
mand load reduction (load shaving) and/or load shifting (e.g., shifting
the demand to the low-price periods) in buildings [12]. Such load
management via modifying temperature setpoints, e.g., by pre-cooling
the building already in the early morning hours before occupants ar-
rive, essentially makes use of the thermal energy storage provided by
the building’s envelope and inner structure. Load management can also
be achieved by strategically dispatching on-site electricity storage [7].

DSM can be mathematically formulated through the concept of
model predictive control (MPC) [13]. In this context, MPC is a math-
ematical optimization procedure to minimize the building’s peak load
on the grid, the electricity cost, and the life cycle cost of equipment
while satisfying predefined constraints such as human comfort and
operating characteristics of building equipment and storage systems.
Different optimization formulations and algorithms have been applied
for DSM [14–16]. Among them, Logenthiran et al. [15] formulated a
generalized DSM load management technique using a heuristic-based
Evolutionary Algorithm (EA). The main objective of this technique is to
reduce the cost of electricity (the utility bill) and the peak load demand
in a future smart grid by scheduling deferrable devices (e.g., water
heater, clothes dryer, coffeemaker, oven, and lights) in commercial,
residential, and industrial buildings. Although substantial savings have
been reported using the proposed technique, human comfort and the
actual tariff structure were not considered in this study. Chen et al. [17]
developed a new one-day-ahead demand-side algorithm for large-scale
data centers using a mixed-integer linear programming (MILP) for-
mulation. The algorithm minimizes the total electricity cost and im-
proves the environmental impacts by optimally shifting cloud service
tasks among distributed data centers.

Over the last two decades, the applicability of DSM techniques has
been improved by integrating energy storage systems (ESS) in a dis-
tributed fashion [14,18–21]. Storage-based DSM enables peak grid load
management without curtailing the actual energy use of the building
systems themselves. In this case, the electricity cost variation (price-
based DSM) can be exploited to charge the storage at time of low
electricity cost and then later use the stored energy during peak de-
mand [22]. Many different such storage options are available, including
electrical and thermal energy storage [23,24]. Several research studies
have analyzed the economic viability of implementing storage-based
DSM under different tariff structures in commercial or residential
buildings (e.g., [25,26]).

While there has been substantial research on optimizing the energy

consumption and peak demand through model predictive control
(MPC) algorithms, relatively few of them have focused on approaches
for adjusting zone setpoint temperature that give near-optimal perfor-
mance in reducing the peak load (e.g., [8,27]). Ma et al. [28] used a
min-max algorithm and ToU tariff structure to reduce electricity supply
(kWh) and demand (kW) costs in a single-story commercial building by
controlling the zone temperature in different time periods. In this study,
a fixed, predefined temperature range was used as a thermal comfort
constraint for the five temperature variables in the control algorithm.
The researchers showed that this MPC-based algorithm can achieve
superior performance in saving electrical costs compared with more
basic zone temperature adjusting approaches. Considering the high
dependency of the real-time comfort model on inside/outside tem-
perature and humidity, radiant temperature, and human activity level
[29], the level of simplification of their thermal comfort model may
limit applicability of this formulation in real world applications.

1.3. Specific motivation and differentiation of this study

We have previously shown, for the residential sector, that adding a
battery to a building can modify its electric load profile on the grid such
that the electricity costs under a typical tariff with both time-of-use and
demand charge characteristics can be reduced to more than offset the
battery system cost (purchase, installation, and financing), thus redu-
cing the building’s overall operating cost on one hand and the building’s
contribution to grid peak demands on the other [22,26]. A similar
modeling framework has since been applied to determine the breakeven
costs of a battery system for commercial buildings on the same tariff
[30]. In such studies, the actual electricity use of the building itself
(appliances, plug loads, HVAC, etc.) is not changed, however the use of
the battery enables a smoothing of the load profile that is passed on to
the grid. In commercial buildings, building automation systems (BAS)
to e.g., automatically dim lights and smooth day time demand via pre-
cooling can achieve significant benefits by optimizing the electricity use
of the building itself – i.e., employing only thermal energy storage in
form of the building envelope itself, however not electricity storage.

Building on above work, in the present study, we investigate whe-
ther (i) employing both thermal storage (via pre-cooling) and electrical
storage can lead to steeper cost and peak demand reductions than any
one storage alone; and (ii) whether such concurrent optimization can be
carried out fast enough in order to employ such framework in real time,
for a typical office building, battery technology, and tariff structure.

In line with this rationale, the proposed DSM approach has the
following novel characteristics:

(a) Concurrent optimization of inside air temperature and dispatch strategy
of the electricity storage system: Several studies explored the ad-
vantages of price-based DSM in scheduling storage or controlling
ventilation or air-conditioning of interior spaces (e.g., adjusting
zone setpoint temperature) in commercial buildings (e.g., [28]).
However, to the best of our knowledge, there have been no reported
studies involving a combination of electricity storage-based DSM
and DSM based on setpoint temperature optimization. This study
concurrently optimizes the daily temperature setpoints and the
storage dispatch using a bi-level optimization approach.

(b) Weather-based computationally efficient control of temperature set
points: In the current paradigms in DSM based on controlling set-
point temperature, the variation of temperature setpoints is limited
to be between lower and upper bounds of comfort and follows a
fixed, predefined trajectory for different seasons. In this study, the
daily setpoint temperature profiles are improved by using B-splines
that are tuned via hourly temperature control points. This for-
mulation offers greater flexibility in representing different arbitrary
trajectories in the daily setpoint temperature optimization, espe-
cially when real-time thermal comfort constraints must be con-
sidered. The resulting computational efficiency allows for real-time
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optimization of temperature setpoints and battery dispatch based
on one-day-ahead weather forecasts (temperature, humidity, wind
speed/direction, and solar irradiance).

(c) Flexible electricity tariff structure: The unique formulation of the real-
time DSM algorithms in this proposed framework makes it in-
dependent of the available price-based DSM programs. For the case
study, we use an actual commercial building electricity tariff for
New York City.

2. Data and Methods

A general overview of the design and its rationale of the framework
is given in Section 3.1. Section 2 is organized as follows: The basic
framework of both a passive and a real-time optimization (steps 1 and 2
in Fig. 4) were developed to be universally applicable for any building
subject to any ToU and/or demand-based tariff and are therefore ex-
plained first (Sections 2.1 and 2.2). Following that are descriptions of
the specific models and parameters used in the case study, namely the
particle swarm optimization (PSO), the battery model, the electricity
tariff, the model for the electricity consumption of the office building,
and finally the human thermal comfort model (Sections 2.3 through
2.7, respectively).

2.1. Passive DSM optimization algorithm

The Passive DSM optimization is performed to obtain the optimal
capacity of battery storage by maximizing the annual profit of im-
plementing electric storage-based DSM on historical load data. The
annual profit herein is defined as the annual tariff charge reduction
minus annualized cost for battery equipment, installation, and finan-
cing. Qualitatively, the optimization evaluates the following tradeoffs:
Higher capacity allows for more pronounced reduction of peak grid
loads thus reducing demand charges in the tariff, charged per kW.
However, higher capacity also increases equipment costs and energy
losses due to round-trip inefficiencies, thus increasing the energy
charges in the tariff, charged per kWh (Section 2.5). Quantitatively, the
passive DSM optimization is formulated as a bi-level mixed-integer
nonlinear programming (MINLP) problem. The bi-level optimization
[31] was chosen in order to reduce the computational cost [32,33]. The
general form of this MINLP problem can be expressed as:
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=
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where Gnw/o and Gnw, respectively, represent the non-DSM and the
storage-based DSM grid loads in month n; and R and P represent the
monthly storage equipment cost (Section 2.4) and the electricity cost
function (Section 2.5), respectively. Λ is an integer design variable in
the upper-level optimization and denotes the size (or capacity) of sto-
rage; and Γn* is the optimal demand limit vector obtained by the lower-
level optimization, as formulated in Eq. (1). The concept of demand
limits and their effect on battery dispatch (i.e., when to (dis-)charge) is
the same as we described previously [26]. Γn is a continuous design
vector with a dimension equal to the number of time periods in the ToU
tariff structure. The constraints related to the battery storage system are
explained in Section 2.5.

2.2. Real-time DSM optimization

The purpose of the real-time DSM optimization is to minimize the
electricity cost by adjusting the grid demand limits (which in turn
govern battery charging/dis-charging; see Section 2.1) while satisfying
battery constraints and by adjusting the temperature setpoints while
satisfying the human comfort constraints. The electricity cost is gov-
erned by: (i) the one-day-ahead setpoint temperature profiles and thus
resulting load profiles for air conditioning and fans (for each zone in the
building); and (ii) the one-day-ahead dispatch strategy of the battery
and thus how much of the load profiles are drawn from the grid versus
the battery.

Fig. 1 shows a pseudo-code representation of this optimization
(Algorithm 1). Its elements are as follows: For every day d in the billing
period (Section 2.5), the daily setpoint temperature profile is defined
using a B-spline, which is updated through a daily temperature design
vector (dXTEMP) that consists of temperature control points (one per
hour; bound between 18 and 26 °C). The purpose of using this particular
formulation is to reach maximum flexibility in defining setpoint tem-
perature (and hence prevent the possibility of obtaining suboptimal
setpoint temperatures) while still keeping computation time for the
optimization feasible for real-world implementation (where the opti-
mization for each day would have to complete during the night before).
In order to reduce computation time, for each day in the billing period,
the optimization is performed only IF the predicted daily peak

Fig. 1. Pseudo code representation of the real-time DSM optimization to find the optimum temperature setpoints and battery charge/discharge profiles.
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electricity consumption (Qmd) surpasses the maximum grid loads until
the dth day (Qm+) in any ToU time period, m=1,2,…,M, of that day
(Section 2.5), i.e., > +m Q Q| m

d
m (see Section 3 for details and rationale).

In Fig. 1, Gk and Ek are the average grid load and the average electrical
load (in kW) in stage k, respectively. Denoting the time interval in a
tariff structure by Δt (in hours), the stages on the dth day are defined as:

+ + + = =k N N N t N d
t

N[ 1, 2, , 24/ ], 24· , 0d d d d1 1 1 0

(2)
In the Qmd formulation, Ek subject to Nd−1 < k≤Nd is the pre-

dicted electricity consumption through the dth day when fixed setpoint
temperatures based on the ASHRAE Standard are used [34]. The Qm+
formulation, Gk subject to 1 < k≤Nd−1 is the grid load (after DSM
action) until the dth day.

The concurrent one-day-ahead optimization of the setpoint tem-
perature profile and demand limits is formulated as a bi-level optimi-
zation [31] (Fig. 2) in order to reduce the computational cost and mi-
tigate the uncertainty in the results of the real-time optimizer [32]. A
one day-ahead optimization for the case study building took 80min on
a standard desktop computer with 2.5 GHz Intel Core i5 CPU and 8 GB
memory (Section 4).

In the upper-level formulation, the temperature optimization is
performed to determine the optimal temperature setpoints for each
zone (dX*TEMP), while satisfying the side constraints on a design vector
and the human comfort constraints. Although human comfort is related
to several factors including lighting, temperature and air quality, in the
case study only the thermal comfort is considered as explained in
Section 2.7. As illustrated in Fig. 2, for each design candidate XTEMP, a
lower-level optimization is performed to minimize the electricity cost
and obtain the optimal battery strategy, as given by:=X G X( ) min[ ( ( , , *))]TEMP k TEMP m

m
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where P represents the electricity cost function (Section 2.5), Λ* de-
notes the optimal storage capacity determined in the passive DSM op-
timization (Section 2.1), and Γm=1,2,…,M is an M-dimensional design
variable in the lower-level optimization which denotes demand limits
in the M different ToU time periods.

Eq. (3), in order to define the lower bounds on demand limits, dif-
ferentiates between two parameter regimes related to the tariff: (i) the
electricity rate per unit of energy (in $/kWh) in the on-peak period, re,0,
multiplied by the square of charging/discharging efficiency, ηC,D, is
much larger than the energy rate in the off-peak period, re,1; and (ii)
otherwise. In the first regime, the maximum available battery capacity

can be exploited while satisfying battery constraints (Section 2.4). In
the second regime, the demand limits are bound by the maximum peak
grid loads until the dth day (i.e., Γm≥Qm+). The first regime will result
in significantly more charging-discharging cycles per month which af-
fects battery life and thus the monthly storage cost. For every day in the
billing period in which the predicted daily peak electricity consump-
tions, Qmd, are lower than the maximum peak grid loads until the dth
day, the two regimes are reflected in Algorithm 1 as follows: In case of
the first regime, the real-time battery dispatch strategy optimization
(Eq. (3)) will be performed and the setpoint temperatures will be fixed
to those from the ASHRAE Standard [34]. In case of the second regime,
DSM will not be performed (but the setpoint temperatures fixed to those
from the ASHRAE Standard).

2.3. Particle swarm optimization (PSO)

Originally developed by Kennedy and Eberhart in 1995 [35], PSO
algorithms have been widely used in MPC to improve thermal comfort,
minimize energy consumption, and reduce the life cycle cost of
equipment systems (e.g., [36–38]). In our study, one particular im-
plementation of the PSO, called Mixed-Discrete PSO (MDPSO), which
was developed by Chowdhury et al. [39], is used in the Passive and
Real-time DSM optimization algorithms. The advantages that the
MDPSO algorithm provides over the conventional PSO algorithm in-
clude: (i) an ability to deal with both discrete and continuous design
variables, and (ii) an explicit diversity preservation capability that
mitigates the possibility of premature stagnation of particles [40].

2.4. Battery model and cost used in case study

We use the same modeling framework for battery charge, discharge,
lifetime and cost as set forth in Zheng et al. [26], and assume the
parameter set for the ZnMg dioxide chemistry (because of its superior
economics in in that study). Briefly, the model assumes a nominal ca-
pacity (Λ, determined upfront via the passive DSM), a time-dependent
state of charge (SoC), a maximum allowed depth of discharge (90%), 3
charging modes (charge or discharge at 1C rate or idle, with respective
on/off times determined by the real-time DSM) with an AC/DC inverter
efficiency of 95%, and a round trip charge/discharge efficiency of
ηR= (ηC/D)2= 80%. The battery needs to be replaced (200 US$ per
kWh nominal) each time either 4000 full cycles are reached or 15 years
have passed (installation cost US$2000). Battery purchase, installation,
and financing cost (10%) are then converted into a constant monthly
battery system cost. In addition, we quantify a simple system payback
time (in years), estimated as the purchase plus installation cost divided
by the annual reduction in electricity tariff cost that is achieved by
DSM. Note that this estimate assumes that the annual tariff reduction
over multiple years is similar to that we determined for 2014 (i.e., as-
sumes similar weather in subsequent years).

2.5. ToU demand-based tariff used in case study

A ToU tariff is a utility rate structure, which divides a day (and/or a
week) into different time periods, governed by different electricity
costs. For large users such as office buildings, a typical ToU tariff in-
cludes not only energy charges (PEC, charged per kWh) but also demand
charges (PDC, per kW) which are determined according to the peak
demand, typically measured over 30min windows. Such tariffs are
designed to incentivise both load shifting (i.e., consuming electricity
during off peak times, here to charge the battery or to pre-cool the
building) and the reduction of temporary demand peaks during the day
(here by exploiting the battery and the building’s thermal envelope
storage). In order to make the case study as realistic as possible, we use
New York City’s Commercial Building tariff SC9 which is described in
detail in Zheng et al. [26] and was recently further characterized in a
related study to determine break-even battery costs for DSM without

Fig. 2. Bi-level optimization in predictive, real-time DSM formulation.
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